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On soliton creation in the nonlinear Schrodinger models: 
discrete and continuous versions 

V V Konotopt and V E Vekslerchik 
Institute far Radiophysics and Electronics, Academy of Sciences of Ukraine, Roscura 
Street 12, Kharkov 310085, Ukraine 

Received 15 November 1991, in final form 24 FebNary 1992 

Abstract. 'the creation of new solitons of both the nonlinear Schr6dinger equation and its 
discrete analogy caused by perturbations of one-soliton initial conditions is considered 
within the framework of the inverse scattering technique. 

1. Introduction 

As is known, the creation of dark solitons is a thresholdless process, which for the 
first time, to all appearance, was observed experimentally in optics by Krokel et nl [ 11 
and then theoretically investigated by Gredescul and Kivshar [Z]. In our previous 
paper [3] where dynamics of perturbed dark solitons within the framework of the 
nonlinear Schrodinger equation (NSE) was discussed, we investigated the creation of 
small additional solitons due to perturbations of initial conditions corresponding to 
the pure one-soliton pulses. In the present paper we wish first to generalize some 
results of [3], namely, the dispersion relation leading to the discovery of a number of 
solitons was obtained there for a particular case of the so-called black soliton (i.e. 
having zero velocity). Here we derive and solve it for any dark soliton solution. Another 
aim is to investigate this problem in the framework of the discrete version of the NSE 
(DNSE) which was introduced by Ablowitz and Ladik [4]. The DNSE, having a rather 
wide area of application, is also important in view of the fact that a great deal of 
theoretical investigations of most NSE applications are based on numerical simulations, 
and hence on a discrete version. 

2. Statement of the problem 

We study the NSE 

iq,+q,+2(p2-lqlz)q = o  (1) 

i (qd,  + (1  - lqnIz)(qn-,  + q.+, -2q.) +2(pz - 1qnI2)q. = 0. 

and the DNSE 

(2) 
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As is clear, equation (1) is a continuous limit (S+O; 6 being the discretization 
parameter) of equation (2) after the substitution 

4. -t qS n S + x  fS2+ f P + P S  
or, in other words, equation (2) is a discrete version of equation (1). 

under the boundary conditions 
Since we are dealing with the dark soliton case, these equations will be treated 

(3) 

(4) 

lim q = p  

ia lim q.=p lim q,, = p  e . 
In order to study the problem of soliton creation from a slightly modulated dark 

lim q = p e'' 
X--m .x-m 

n--m "dm 

soliton, consider the following initial conditions: 

q(x ,  f =O) = q '" (x )  + S q ( x )  ( 5 )  
(6) q.(t = 0) = q?+ Sq. 

where q'"(x)  and q?) are pure soliton conditions: 

1 + eie exp( v x )  
1 +exp( ux) 

q'"(x) = p 

with Y = 2p sin( 8/2), and 

(7) 

with h defined by the relation 

where r = (1 -p2)1 '2> 0 and only the case of p2< 1 is considered. 

soliton of the DNSE is given by 

2(plr) sin(8/2) h > l  (9) h1/2-h-1/2= 

The one-soliton solution of the NSE can be found, e.g. in [3,5], while the dark 

l+e"h" exp(pt) 
q!"P exp(pt) 

with p = 2pz sin 8 (it is a particular case of the one-soliton solution of the discrete 
Hirota equation recently reported by Narita [6]). 

The differences S q ( x )  and Sq,, describing perturbations of initial soliton pulses, 
are assumed to be sufficiently small (the precise meaning of this is discussed below). 

What we are interested in is the number of solitons formed from the initial pulses 
given by ( 5 )  and (6). That can be obtained by means of the inverse scattering technique 
(IST) which is applicable to both the NSE and the DNSE. The IST for the NSE has been 
described in detail in numerous works (see e.g. the monograph [SI) and was outlined 
in [3]. As to the DNSE, some points of the IST for the case of non-zero boundary 
conditions will be represented here. 

3. Linear scattering problem 

The linear spectral problems associated with equations ( I )  and (2) are as follows: 
(J /Jx )@(x ,  A )  = U ( x ,  A)@(X, A )  

@ ( n  + 1,z) = UJz)@(n ,  2 ) .  

(11) 

(12) 
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For the definition of the matrix U from ( 1 1 )  see references [3, 51, while the matrix 
U.(r) is given by 

with the potential q.=q, , ( f  =O), A and z being spectral parameters (a bar denotes 
complex conjugation). The scattering matrices, (the subscripts stand for continuous 
and discrete models respectively) are defined by 

‘Wx ,  A )  =@+(x, A)T,(A) (14)  

~ - ( n , z ) = @ , ( n , z ) T , ( z ) .  ( 1 5 )  
The matrix Jost functions @& for the continuous case were defined in [3, 51. Their 

(16)  

disrre!e znz!ogies BTC the so!u!iocs of (12), satisfying !he !imi!ing ccndi!lcxs 

n-*m lim @*(n, z )r -”  diag([-“, I“) = C,(z) 

with v = p - ‘ ( r S - z ) ,  e=exp(#/Z). 
Characteristics of solitons can be obtained from the discrete spectra of the scattering 

problems which are defined as the set of zeros of T!”(A) for the case of the NSE 

(hereafter the designation ac(A) = TV”(A) is used) and the set of zeros of T(:2)(z) for 
the DNSE. For the further purposes it is convenient to introduce the quantity 5 defined 
by 

In terms of 5 the diagonal part of the scattering matrix is a meromorphic function. 
The element T:*” considered as a function of 6 will be denoted hereafter as ad(5). 

Now the relation between parameters of solitons and the eigenvalues of the scatter- 
ing problems may be expressed as follows. In the continuous case the amplitude vk 
(which is, at the same time, the inverse width) and the velocity uk of the kth soliton 
are given by [ 5 ]  

U, = A x  U, = (4p2  - Ai)”’  (7-0) 
where Ax is a zero of a,(.\) from the segment ( -2p, 2 p )  of the real axis. In the discrete 
case, parameters hk and pk of the kth soliton are given by [7] 

hx = p k = 2 r ( h k - l ) 1 m 5 ,  (21)  
where Sk is a zero of a d ( [ )  from the interior of the unit circle: lek/ < 1. 

‘pure soliton case (put 6q and Sq. in ( 5 ) ,  ( 6 )  to be equal to zero): 
The Jost coefficients a,(A) and nd(5) can be obtained in an explicit form in the 

- 
A i-+ 2pE 

A+-+ Zps 
ak’(A) = E 
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with 

4. Perturbation analysis 

The case of small deviations Sq and Sq. may be treated using the perturbation technique, 
based on expansion of the scattering data in functional series in initial perturbations 
[3]. Omitting the straightforward but rather cumbersome calculations, we present here 
the resulting formulae: 

_- 
where As = -2p C O S ( ~ / ~ ) ,  

m 

A!.’= Re j-,dx q,(x)Sq(x) 

for the continuous version (these formulae generalize the expressions (70)-(71) from 
PI), and 

where 

and 

for the discrete one. 
From (25) and (28) it follows that Sa, and Sa, possess singular points A = 12p and 

5 =  r*ip respectively, which are the edges of the continuous spectrum (in the discrete 
case (see (12)) the continuous spectrum is a union of the two arcs of the unit circle 
( l z l=  1, Re z<r ) ,  while in terms of 5 it is the unit circle with the two points, r*ip, 
deleted). That the scattering data are singular is a characteristic feature of the case of 
the non-zero boundary conditions (3), (4). the pure N-soliton case (i.e. the case of 
the reflectionless potentials in (14), (15)) being, apparently, the only case when these 
singularities are absent [ 5 ] .  
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Considering the validity of the approach, it should be pointed out that the exact 
limitations for the initial perturbation can be obtained from the evident requirement. 
The next term (i.e. a quadratic functional of Sq(x) or Sq,) in the expansion of the 
Jost coefficient into the functional Taylor series has to be much less than those given 
by (25)-(31). Corresponding calculations are both quite simple and bulky, and that is 
why they are not given here. However, as is clear, an approximate requirement for the 
approach to be valid can be given by A!;)<< 1 or A!?<< 1 (for continuous and discrete 
versions correspondingly. 

Equating a(’)+ Sa with zero, the dispersion relations can be immediately obtained 

(A -A,)=+Z(A - h S ) A p ’ + 4 p A ~ ”  = O  (32) 

by 

for the continuous case (cf equation (72) in [3]), and 

for the discrete one. 
The analysis of these equations leads to the following result. There are the roots 

of (32), (33) which are close to the ‘unperturbed’ ones, A, and 5, (the solitons that 
correspond to these roots may be called, by analogy with [3], ‘prime’ solitons). Also, 
there can be solutions of (32) and (33) lying near the edges of the continuous spectra 
+2p and r+ip. The corresponding solitons (such were termed ‘additional’ in [3]) are 
of small amplitudes (U, =0, hx = 1) and of large velocities. Their number (if any) 
depends on the relation between A,,r. 

Seeking solutions A, of equation (32) being close to the points +2p, they may be 
joined to the segment (-Zp, 2 p )  if the requirement 

is satisfied. By analogy, the solutions (* of (33) close to the points r + i p  are of physical 
interest (I,$*]< I ) ,  if 

(35) 

where g=i(h”2+h-1’2) .  

L n-..-,..-:-- 
2. LU”El”SlUll 

Thus, the main results may be summarized by means of the diagram sketched in figure 
1 (both the continuous and discrete cases can be demonstrated simultaneously, with 
the indices ‘c’ and ‘d‘ being omitted). The plane (Ar,A, )  can be divided into four 
sectors in compliance with the number of solitons being created from the initial pulse 

additional soliton). That all sectors meet at the point Ai = Ar = 0 is an illustration of 
the thresholdless character of dark soliton creation. 

Finally, let us review the results in view of the computational application of the 
DNSE. In the continuous limit (S+O) r = 1 + 0 ( a 2 )  and g = l + O ( S 2 ) .  Hence the 
discretization can affect the number of solitons calculated only when Ai,r are rather 

(the ‘taG-so!iton’ S P E ~ Q ~ ~  2 find A c~rresponcj l o  appasitc movino dirertinnr nf the 
0 
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4 The prim Sdl1t.n 
and e new-born one 

A, 

and two new-born ones 2 me p'lme soliton 
and P new-born one 

Flgurr I. The complex plane of (Ar,  Ai) is divided into four parts by two lines (for clarity 
they are depicted for 0 E [ 0 , 2 n l )  crossing zero. The pans correspond to different numben 
of solitons. The transition between points A and B is a graphical representation of the 
system sensibility with respect to small variations of the disereteners parameter. If A is 
close to one of the  dividing lines, even a small change of S (IABI =O(S)) may result in a 
change of the number of solitons. Factors fL, are dehned by fL, = I+cos 0. 

close to the borderlines between the sectors in figure 1, since the difference between 
A!,:) and A!;) is of the order of S. 
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